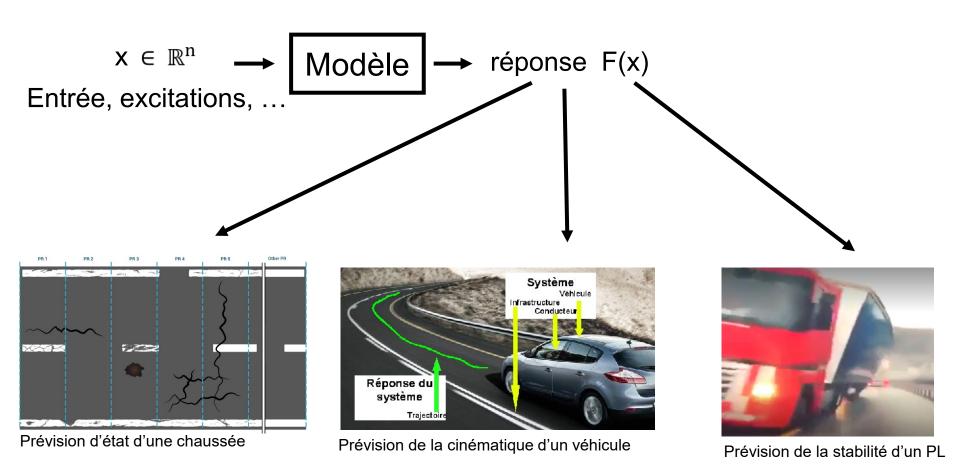


Aperçu sur l'approche probabiliste et fiabiliste de la sécurité routière et des infrastructures, indices de fiabilité et méthode FORM-SORM

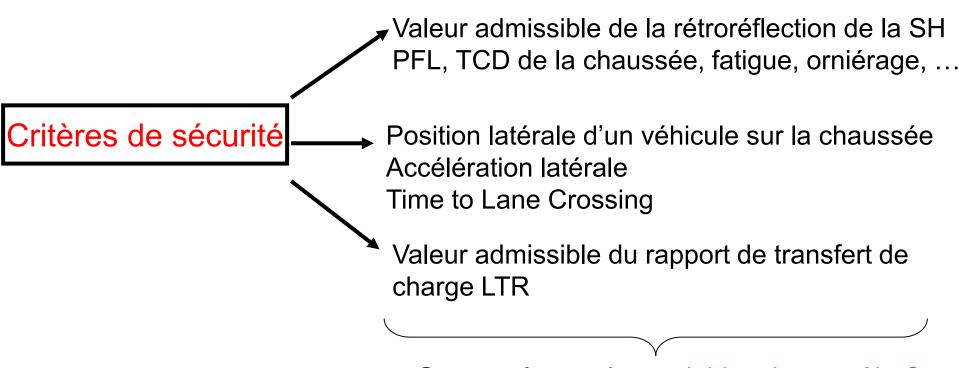
Atelier 2

Dimitri DAUCHER
Université Gustave Eiffel / COSYS / PICS-L


Outline

 Aperçu sur l'évaluation probabiliste et fiabiliste de la sécurité routière et des infrastructures

Applications



Les limites des approches déterministes :

Les limites des approches déterministes :

Gouvernés par des variables de contrôle C

Modélisation probabiliste / Choix des paramètres aléatoires :

$$X : \mathbb{R} \times \Omega \to \mathbb{R}^n \longrightarrow \boxed{\text{Modèle}} \longrightarrow F(X)$$

Paramètres de chaussée, devers, adhérence, uni...

Idéalement loi de X déduite de données statistiques

éventuelle analyse de sensibilité pour classer les paramètres aléatoires selon leur influence sur la variabilité de la sortie du modèle Calcul d'indices de Sobol : sorte d'analyse de variance

Analyse fiabiliste:

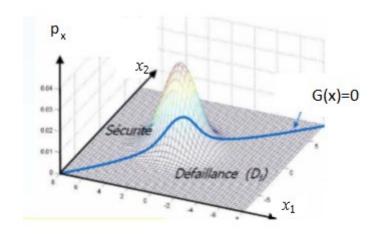
Objectif : évaluer des niveaux de risque associés aux critères de sécurité à partir de la modélisation probabiliste proposée

Etats limites:

ELU : son franchissement conduit à une défaillance irréversible du système exemples : perte d'intégrité du système, dégâts matériels/structuels significatifs, perte de contrôle d'un véhicule, renversement d'un PL, ...

ELS : son franchissement conduit à une défaillance temporaire et réversible du système

exemples : franchissement d'une voie de circulation par un véhicule, déformation réversible d'un système (élastique), ...


Critères de sécurité —— Fonction d'état limite G

 $D_S = \{ x \mid G(x) > 0 \}$ domaine de sécurité

 $D_f = \{x \mid G(x) < 0\}$ domaine de défaillance sur lequel le(s) critère(s) violé(s)

évenement de défaillance : $E_f = \{ \omega \mid G(X(\omega)) < 0 \}$

Objectif : Calculer $P(E_f) = \int_{D_f} p_x$

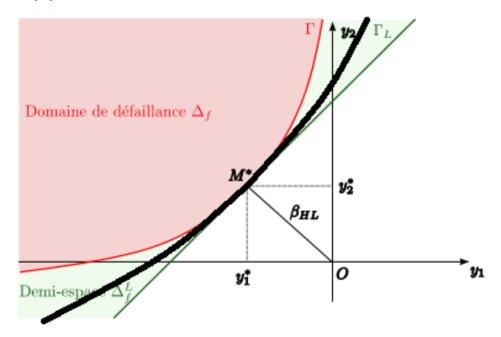
Calcul exact généralement impossible

Formulation standard: transformation T gaussienne

$$P_f = P(E_f) = \int_{\mathbb{R}^n} \mathbb{1}_{\Delta_f} \mathbf{y} \varphi_n \mathbf{y} d\mathbf{y}$$

$$\Delta_f = T(D_f) = \{ \boldsymbol{y} \in \mathbb{R}^n : \Gamma(\boldsymbol{y}) < 0 \}$$
 $\Gamma = G \circ T^{-1}$

 φ_n est la densité de la loi gaussienne standard



Indice de fiabilité de Hasofer-Lind :

$$eta_{HL} = \delta(O, \Delta_f) = \min_{M \in \Delta_f} \|\overrightarrow{OM}\|_n$$

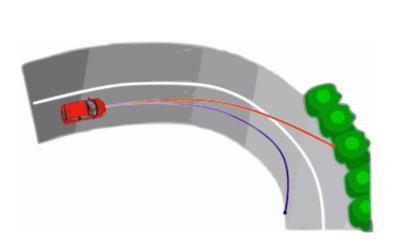
Calcul plus aisé que celui de la probabilité de défaillance

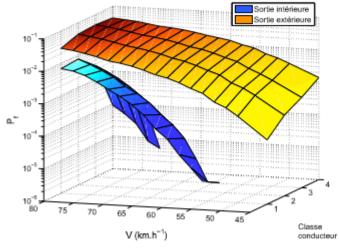
Approximations:

FORM:

remplacer le domaine de défaillance Δ_f par le demi-espace Δ_f^L tangent à Δ_f en M^*

$$P_f^L = \int_{\mathbb{R}^n} \mathbb{1}_{\Delta_f^L}(oldsymbol{y}) arphi_n(oldsymbol{y}) doldsymbol{y} \ = \Phi(-eta_{HL})$$

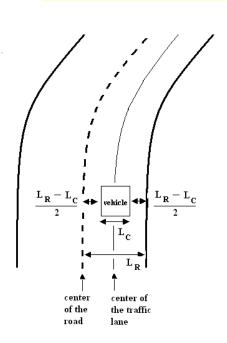

SORM:

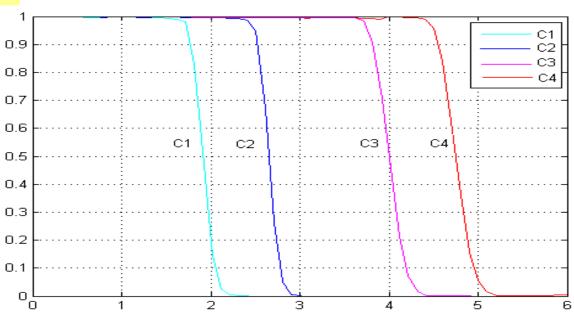

remplacer la fonction d'état-limite Γ par son approximation quadratique Γ^Q en M^* .

$$P_f^Q \sim \Phi(-\beta_{HL}) \prod_{i=1}^{n-1} \left(1 + \frac{\varphi(\beta_{HL})}{\Phi(-\beta_{HL})} \kappa_i \right)^{-1/2}$$

Application : Sécurité routière

Paramètres de chaussée : devers, uni, adhérence...

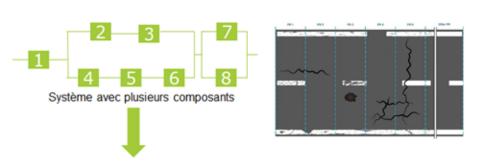

Paramètres véhicules : cg, cinématique


Prévision de la défaillance

Application : sécurité de la trajectoire d'un véhicule en virage pour un critère de sécurité

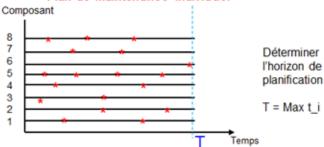
$$P_f(\delta) = P(\sup_t F(U(t)) \ge \delta)$$

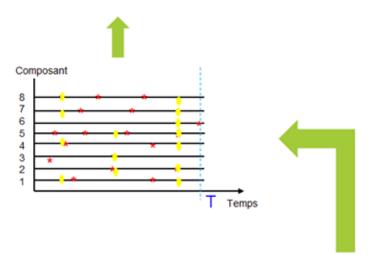




Évolution de δ (en m.s⁻²) \rightarrow $P_{\rm f}(\delta)$ pour le critère accélération latérale pour différentes classes considérées

Application: maintenance d'infrastructures routières




Déterminer la nature de chaque composant

Composant	1	2	3	4	5	6	7	8
Critique/non critique	1	0	1	1	0	0	1	0

Plan de maintenance individuel

Déterminer la date de la maintenance en minimisant le coût de pénalité

Calculer:

- Coût de mise en œuvre
- Coût de pénalité
- Coût d'arrêt planifié

Déterminer la structure optimale en maximisant PET

Calculer le coût économique total comme la somme des profits économiques

Merci de votre attention

Dimitri DAUCHER
Université Gustave Eiffel, COSYS, PICS-L
14-20 Bd Newton, Cité Descartes, 77447 Marne la Vallée Cedex
dimitri.daucher@ifsttar.fr